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e " ABSTRACT
Linéar.estimatlén, theory‘i;s.hben applied extensively to nonlinecar
systems by assuming that perturbations from 2 reference solution can
be described by linear equations, As long as the second order (and
higher) terms in the periurbation equations are ﬁegligible, linear
estimation techniques haéé been found to yield satisfactoby response,
Many exampigs have be;n encountered in which the linear theory is not
satisfactory, howvever, and it is to this situation that attention is _
directed here. Time-discrete systems in wh}ch the second o;dér effects
are small but nonnegligible are considered. Recursion relatiocns for
' ¥hile these relations
yield approximations to the true values of these moments, they are

the conditional mean and covariance are devecloped.

" superior to the approximations provided by applying linear theory to
& nonlinecar system. Sone results for a simple systen are presented

" in which the response from linear and nonlinear filters is compared.

.
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I. INTRODUCTION T

Considerable attontion his Heen dévoted to the problem of determining

unbiasced, minimum variance estimctes of the state of linear systens

from noisy measurement dats, For linear systems with additive vhize

noise the solution, frequently referred to as the Kalman filter, is
well-known [1] andiit‘has reccived application to a variety of engineering

problems., V¥hen the system is nonlinear, linear perturbation thcory is

introduced and the linear filter is applied to estimate the
perturbations. This has been found to provide satisfactory
mo3t cases but cccasions [2] have been encountered in which nonlinear
effects prove to Save a Gery deleterious effect upon the filter response,
In the succeeding discussion a nonlinear filter is presented that is

state

results in

appropriate for use when the second order terms are small but nonnegligible.
Computational results indicate that a significani improvement relative
to a linear filier can be obtained using these relations.

A considerable portion'of the recent research into nonlinear filtering
has been concerncd with the determination of the a posteriori density

function of the state conditioned on all available data, Having this
; density, then any type of estimate (e.g. minimum mcan square error,

nininun absolute, most probable) can be obtained, theoretically. Because
of the difficult‘ﬂs involved in using the general results that have been

obtained, attention has been directed to methods of approximating either

the density or its moments. This approach has been taken by Bass, Norum

and Schwartz [8] for coktinﬁous systens. They ipproximate the true a
posteriori density by assuminé that it is represented by the first and
seeopd order noments (511 higher order moments are negligidble). In the
investigations presented below, time~discrete systems are considered
and the a posteriori density is assumed to be gaussian éﬁd recursion

relations for- the mean and covariance are derived. The relations that

are obtained are similar to the relations for linear systems but

incorporate the effect of second order terms in the plant and mecasurement
equations, .
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The ggneréiﬁprobléﬁ and its solution are presented and discussed in
Section 2. No justification for the results are given there. This
dﬁsduséion is:éived ig~Séct£on 3 fér a scalar system., A scalar rather
than vectqr:systea:ié eonsi&éred_bBCause the notation is simpler and
thershy avoids ﬁp}htgresﬁfﬁg’cpmﬁégcations in the discussion., The
genéralization torthg-mgitfﬁimensiqnal'results presented in Section IX

is 5tfaighﬁf£ofwar§.>“A ainple numerical exanmple is discussed in Section

IV and the response of the nonlinear and linear filters is conpared, .

»

II. GENERAL PROBLEM AND ITS SOLUTION-

The state xk of 2 dynnmicai systemris to be qstimaféd from a cellection

" of discrete measurcment data 631 Lr.‘zk). The evolution of the state
St

is éssume&rée be described by a system of nonlinear difference equations
e ® P Tear * BlBg) 4 e | (2.1)

The m-dimensional measurement data z, at each sampling time have a known
nonlinear relationship with the state )

7, =H, x + °k(xk) + v ' (2.2)

In (2.1) and (2.2) the system i{s assumed to be completely known except for
the initial state x, and the plant and measurement noise sequences ¥

3

and vj »" The n and m-dimensional vector functions 8y and e, are

k
known and are such that the ith component is given by

.

si = xk—i Gi 'xk..i (1 = 192' ...,n)
0; = xz E; xk (1 = 1,2, onc-,’l?)

where the G; and Ei are symmotric (n x n) matrices. The F, is a (n x n)

k
matrix and the H,_ is5 a (2 x n) natrix.

The initial state and the noise sequences are assumed explicitly to be

gaussian and to be mutualiy uncorrelated., Further, the noise sequences
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ére taken to be uncorrelated between sampling times and ‘shall be

referred to as white ncise sequences, The initial state has the
density

p(xo) k, exp - \x -a) M -1 (x -a) (2.3)
and at each sampling time the r>ise samples have the densities

p(vj) =k exp - (2.4)

L]

p(vj) =k, exp -

ROiss N
[ F'S
0
Gude
u.‘

L .
vy Ry vy . {(2.5)

-

There are many possible types of estimates that could be considered for
this problem. Cox [4] has considered estimates for nonlinear time-discrete
systems that are chosen to maximize the a posteriori density function.

The conditional meain is known to give the estimate that minimizes the

mean square error and this estimate is considered here. Thus, the
discussion will be directed toward approxiﬁating the mean of the 2
posteriori density tunctioﬁ in a recursive fashion,

The manner in which the a posteriori density p(xk/zk) evolves from one
sanpling time to the next is easily .established. Specifically when the
noise is uncorrelated between sampling times, then the general recursion
relations are given by _ :
.
p(xk/zk) p(zk/xk)-

3
plx, /z") = : (2.6)
k/ p(zk/zk'-i) ‘

.

and . '
p(xk/zk'i) = J{p(x _1/zk'1) p(xk/xk-i)dxk-i ’ (2.7)

vhere the normalizing constant p(zk/zk 1) ie

plz/2"") = f p(xk/zk Yy plzy/xdax, (2.8)

LJ
The notation ak will be used to denote the set (ai,az, e ak)




éhe 1ntégrals—are n-dimensieral in (2.7) and {2.8).

The .density p(xk/z ) described by (2.6) will be referred to as the
Bredictxo density whereas p(xk/z ) will be desighated as the filteripg
density. In general it iz very difficult to perform in a closed form
the operations required in {2.7) = (2.8k, Also, it is difficult to
determine the moments (specxfieallv the mean) from (2.6).. Thxs 15
discussed in Referenceé 5. However, if the moments of p(xk 1/z ) are
known, it is a relatively straight forward procedure to determine the
moments of the prediction density p(xk/zk°1) if the plant noisc is
additive and gaussian. This will be discussed further in Section III

as will the difficulties- involved in obtaining the moments of p(xk/zk).
VWhen the system is linear (i.e. g, and e, are identically zero in (2.1)
and (2.2) ), then the operations in (2.6) - (2.,8) can be carried exactly
and are known to be

k~1 1 A T

P(xk/z ) = kk/k-1exp - E(xk-xk/k 1) k/k 1(xk k/k 1) (209)
and . ,

Plx,/2%) = keexp - Sx -2 TPr Nx 8 (2. 10)
where

xk/k 1" Fk X4 (2.11a)

P cF P " - . .

k/k=1 = "k Prat Fie * Qg - (2.11b)
and \

' =% K % ‘
L Y R W [ kxk/k:1] ‘ (2.12a)
P,

Prsiet = Kk P Pyeeq (2.12¢)

3 g &
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Equations (2.11)= (2.12) Are known as the Kalman filter equations,

These relations have been.stated for ease of reference for the

following discussion.When the system deseribed by (2.1) - (2,2) is
cghsﬁdereﬁ, it is no longer possible to obtain the exact relations for

the moments, Because of the non!inearitica,,the prediction and filtering
densities will lose the gaussian character. In gencral, these densities
will lose their symmetric properties and the skewness will be nonzero..
This means that the maximum p;int of the density will no longer correspond
to the conditional mean, K

If the nonlinearities are relatively amall,'then’the skewness will be
small and the density will retain an essentially .gaussian character,
Supposing that the p(xk/z ) and p(xk/z ) -can be approximated by the

. gaussian density even in the presence of ‘he plant and measurement
nonlincarities, then these densities will be described by (2.9) -~ (2.10),
The moments %, VSRR T ‘:Ek, P, will not corrcspond with (2,11) - (2-12)
in this case because of the g and e, in (2.1) - (2.2). The following
relations are proposed as approximations of these moments, Their
derivat‘on is discussed in Section III.

A A
xk/k_i = Fk !k_d + sk . (2.133)

Pk/k:-i = [Fk*z@k] Pk-—i [Fk+2 C?J T + de +29k (2,13b)

where the 1P component of gk is ' g

L]
,\.

i

A i
(Ek)i = 1 K xk;i + trace G P, .

th

The 17" row of the matrix §, 1is

_Aa T i
Py =% 1 &

and the ijth element of the matrix Gk is

- i J :
(9, )4 = trace G, P, 4 G P ) -

mm e o A Pl e i




For the filtering density the moments are approximated by

) A A
xk = xk/k~1 + Kk Ezk-zk/k-]] (20 148)

>

Py = Prrk-1 = K [ne2V, ] Py k-1 (2.14b)

whiore . ' - !
K e, . - T [ T -1
K = p%:/k—i (H, 42 \f’k) (!1k+2 Vk”k/k-l (B, +2 "}'k) +R, +2 Ak]

A

sy 2 A
Pkt T Pk ka1 t %k

th

The 1~ componeni of e, is

k
A ‘A T §{A 1'
(ek)i = xk/k~1 Ek xk/k-i + tgace Ek Pk_1

th

and the i~ row of \Pk is

~ ) A T 4
b Yy = Jemes B

_ The 1';]th element of the matrix Al" is

X cq j
,(hk)ij = trace (Ek Pk/k-i By Pk/k-i)

Note that if there are no nonlinear sorms, then (2,13) and (2,14)
reduce immediately to (2.11) - (2.12).

4

It is interesting to examine these relativns by comparing (2.13) - (2,14)
with (2,11) - (2.12), First, note that the nonlinearities have the
effect of modifying the ‘linear transition mairix Fk in (2.13b) and the

i in (2.14bj. In ine former the F, of the
linear filter is‘replnced by (Fk+2<¥L) and in ile latter: the H, is
modified to (Hk+27Pk). This provides the primary influence of the

nonlinearity upon the covariance matrix. Further, there is an additional

linear observation matrix H

effect which can be viewed as an increase in the plant and measurement

noise covariance matrices. The plant noise covarianc is increased

\\Q
k-1
to (Qk~1+2°k) and the measurement noise covariance decorss (Rk+2 Ak).
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1XX, DERIVATION OF THE APPROXIMATING MOMENTS

In.this Section the derivation of-the mouents stated in Section II
is discussed in terms of a scalar system. The scalar system is
discussed here in order to simplify the notation, The extension to.
the general multidimensional.results is straight forward,

Q

Consider the predictién density first., The only assumption required to

4 . 2 k=1
establish Xy /i1 and Py /K1 is that the a posterieri density p(xk_i/z )

is gaussidn at each sampling time, The scalar version of (2.1) can be
— . .
written as

. - 2 . .
* = T %1 * Bk Yot * Vi1 (5.1)

The density for the noise scquence will be written as

1, Yk
p(V k) = k-w exp‘- E (—E;) . R

The moments of p(xk/zk'i) can be obtained from (2,7) by noting that
' E[xi/zk'q = fxb ptx /2% ax
LR 2F R P k
Substituting (2.7) and iterating 1n£egra18, one obtains

= jfdxk p(xk_1/z?'1{/fx; plx /%, _()dx . (3.2)

The density p(xk/xk-i) is known from (3.1) and (2.4). It is

2 2
x, - £ x - B X
e i,k k"k~1 kK k-1
Px/Xq) = Ky exp - 3 ( Ty q >,

*

Using this relation, the innermost integral in (3.2) is easily detarmined.
In the case when i=1, the mcan value is’

2 . .
B [xk./xk_;l =L X g+ B¥oq




.
.

Then, from the ganssian property for p(xk_i/zk"i), one obtains

2

o ) -1] - 2 - k’i]
E [xk/z = E S.:rkxk_1 + B¢ / z
A 2 k-1]
=1y X g+ By E[xk-d/z
A ) A @ 2 A2 '
Tx/xe1 = Tk g1t Eic(Peog + Xpoyq) ‘?‘3)

This is the scalar version of (2.,13a), It can be obtained without
recourse to the general Bayesian relation (2,7) simply by computing
the conditional expectation of X\ using (3.1).

The error in thig estimate is given by . - - =

A A 2 A A 2
) ~ *k/x-1 T fk(xk-i"}k-i) + gk[(xk-i'xk-i) * 2"‘x-1“k-1)"k-1'1’k-1]

+ 'k-'i

Using this result, the variance is

' A 2, 111D, 2
'E[("k"‘k/k-1) /2 ]=~' Py /k-1

2

' A 42 2 4 2
= (fe2g, Xy )7 P * 28 Proq * 91 (3.4)

Equation (3.4) is the scalar vz;sion of {2.13b). Note that the only

A k-1
approximation of Xy k1 and Py k-1 is that the p(xk_i/z ) is gaussiean,
The nonlinearities destroy the gaussian character of the density however
go {3.3) and (3.4) will be approximations.
The effect of tho plant nonlinearity upon the density can be studied by
determining the third and fourth central moments, If the density
p(xk/zk_i) were gaussian, then the third central moment would be identically
zero and the fourth central moment would be 3pk/k41. Consider what the

values actuélly become, The third central moment is found to bdbe
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A 3, kel 4 2 2 2
E[(xk"xk/k-i) /= ]‘ 28 Py-1 [s‘fk+23k;k-1) “8y Pyg.1 (3.8)

and thé fourth central moment is °

4

A -1 A
E[(xk-xk /k-1)4/zk ]: 3’!:/1:21 + 10gk ’kfi * 4gi(tk+23k xk_1)2 6

Pk-1
From (3.5) it is clear that tﬁg presence of the nonlinear coefficient
&y will cause the third central moment to be nonzero. Similarly, the
g, causes the four?h central moment to change from the gaussian value,
The changes from the gaussian moments are séen to be proportional to
pk_: in (3.5) and pk_§ in (3.6). If the tilter converges to the true
value of the state as the number of samples. becomes. large, one sees then
that the gaussian-destr.ying terms converge to zero much more rapidly
than does the variance p: This implies that the gaussian approximation
will improve as k becomes large. ;

The derivation of the moments for the prediction density is not difficuli,.
This is not the case for the moments of the filtering density. Consider

for a moment the calculation of p(xk/zk 1) trom {2.6). .First, it is clear
that knowledge of p(x /z ) and the messurement equation

2 . "
2y = by X e xs ' : | (3.7)

defines p(x /z ) without grrgr. The denaity for tbe 'k is assumed
to be p(v ) = k. exp - -(—-) + That is,the p(xk/z y using (2.6), ia
fornmed by an algebraic combination of the densities. Unfortunately, it

is not an easy task to determine the moments of the density that results.

To understand this, note that

22

hk K™% k)
b 3
k

Pz /x,) = keexp = X 2 (3.8)

%
Assuming that p(x_ /25y is gaussian, the y(xk/z ) can be computed from
(2.6) and can be written as : -

2 3 2.4
~2e 2z x."+2h, e, X, +€, X
p(xk/z ) = ky QXp-E §k) exp - “( L4 kz kkk Kk (3.9
r
k

(3.6)

I
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vhere A 2 4
’ c—!—..—-k..*u—-—-‘x ¢
2 2 2
™ Y% Pxxer -
A

2 2 b2 ket

;’ » ( + )
k r. 2 . 2

I Pg/g,: .

The ky is a quantity not involving the state Xy v Tho‘ﬂﬁ and fk are

the variance and mean that is obtained when the system is linear., Thus,

the measurement nonlinearity modifies the filtering density for linear
syrtous by appearing ‘as an exponential factor. This factor contains

the fourth power of the state., It is apparent that the moments

![xi/zkj cannot be computed directly from (3.9) because of the nature

-0of the second exponential factor., Thus, it becomes necessary to approximate
the moments in some way. This problem has bean discussed in Reference 5,

e ssg——————

For this discussion the approximation shall be accomplished indirectly.
First, one sces that the moments relating to the measurement (i.e.

E'[ zi/zkd] ) can be computed in the same way as was done for the
prediction density. Thus, one obtains

A A 2 A 2
5kt " B /a1 * ’k(pk/k-i + xk/k-i) (3.10)
Yhen a measurement z, is processed, the error in the esgimate Qk/k-i'

is . .

A
‘k = zk"zk/k-;

’

Then, hypothesize'tﬂat an estimate ;k is obtained by adding the error
. A *
€, linearly to the predicted estimate Xy /e

I zx = gx/k-x * Kk(zk'gk/k-i) (3.11)
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The gain matrix Kk shall be determined so that the mean square error

izii[.t(xk-fk)/zk'f] .is aininized,

Note the’averaging is restricted to the measurement 2. The error is
found to be

. ' ' 2
A A I @ A A A A
X%y = (x-X 0 4) - "x["k("k"‘k/k-a)“k (oe~xy ika1) 2% e Xy i q)

2
. Pfee1) *
It follows that the K that accomplishes the minimization is given by

) A 2
(byv28, % 4Py iy

R

L A 2 2 4 2 (3.12)
he28y X/xe1) Pi/ra1*28k Pr/ke1t k]

The variance is approximated by zz,{?[Sxkdﬁk)zlzﬁfnhnd is found to be
. k

CoA .

P " Pepet = Bl Py (3.13)
Equations (3.,10) « (3.13) are the scalar versions of (2,13) - (2.14).
Although these results are admittedly obtained in a suboptimal fashion,
it is worth observing that this procedure yiclds the optimal solution
for linear systems [1] . Note that the estimate is stagewise unbiased,
That is , one finds that.Eikxﬁ;] is equal to E[x;)when E[xk_1 "Qk-i‘
Computational results obtained from thess filter equations are encouraging

and suggest that the approximation is reasonably accurate and certainly
is an improvement over a purely linear approximation,

B B AOJ TIIELT  Fnlr
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IV. A NUMERICAL EXAMPLE

.

In.this section a simple problem is considercd in order to ccmpare the

linear and nonlinear filters: Thc example has been discussed previcusly

by Denham and Pines [é] in connection with the inadequacy of a linear
filter when the nonlinearity.is comparable to the measurement noise,
. “ 1

Consider a scalar sysiem wit*. a static plant

X =Xy . . (4.1)

and measurements describéd by

zk ] ’: *"k (402)
The statistics for the initial state and measurement noise are
2 2
z[xo] = a4 E[(xo - a) ] =m

oddeon afif)esd

The state Xy will be estimated by using perturbation theory. Then,,
the results of the preceding sections will be applied to, estimate the
perturbations. The perturbation equations are - '

xy = 8xy - (4.3)

Szk = 2::1‘:1 Sxk + 2 Sx: + vy (4.4)

®
wvhere :k-i is the nominal state and

'3 4 *

Bxk = X -Xy

- A —— b




s Ay

&y
R

B e
P RN RO RIS e

o e o ose s N+ N e e oo AR —— R S A OTTI IR M

« 14 - . .

The nominal was chosen to be :

and this value was retained for all k.

This system was simulated on a . digital computer, The initial perturbation
S&o and the measurement noise sequence were obtained from a Gaussian
random number generator according to the prescribed statistics. Some
typical results are portrayed in Figures 1 and 2, In these Figures the
standard deviation Py for the nonlinear filter is plotted as is the
absolute value of the error \xk-xk\ for the linear and nonlinear filter,
The Py for the nonlinear filter is given because it is somewhat larger
than for the linear filter but is not significantly different. In Figure
i1 the variance of the initial perturbation is 0,01 and this was increased
to 0.1 for the results shown in Figure 2, The comparison of Pe and
‘xk-x | indicates that the linear tilter behaves somewhat satisfactorily
for the smaller initial deviation (i.e. Figure 1) although it seems to
be dfverging as the number of samples increases, In the second case the
linear filter is obviously inadequate because the error and iis statistiec
are in‘complete disagreenent. On the other hand tle nonlinear filter
gives significantly better results and suggests that a great deal more
confidence can be placed in- the estimates. These results are typical
of those that have been obtained. (Unfortunately, the data from a
complete Monte Carlo simulation cannot be presented at this time).

*

The numerical results that have been obtained suggest several conclusions,
The two most important are stated below,

(1) Unless the measurement noise is "swmall", the linear filter and the

) nonlinear filter give essentially the same response. A precise
definition of "small" shall not be.attempted other than to say that
the noise must be small relative to the second order effects,

(2) ¥hen differences between the linear and nonlinear filters do arise,
the latter gives consistently better results in the sense that the
error and the statistic are consistent with one another,




R T

3
H
H
*
B : +
cefeles .
i 1
. 4 1111 [N
I IR ve
HH i
b3
84 383 i
Teet ’e
1 . 4
11353 3
- ad .
1538 thotre P29L 2137
x* 14 $6634 rrevgovorfocs -
ths 1Y ot
jis M 344 - npae
- b reete -
b+ e v i
e g 1531344 -
123 pyua i I3 .-
bt Sl : .
v 2T LTI Iy $23
i . shesselt |4 hvo
JregLss . tipesefifortes
ﬁf' & 1 corfriiiyedd
12343 . 124 43 +
(- X2 183 I - Jt15223 sTint ehdsd e12d3 HI3es
: 4 te 1] 1S ¢ v
pod- 732208 IEE L RTtiistt It ettt Seded petes
i et “ they ofroe
33 )eiteeel I :
¢ . . . e
28t 1 14431 <) 1{ sttt 1 ed thot teete ot et et $01E £330 103y s d 18dn -
be . von .
‘XY' Y $ 2929 209w¢ Seaps peude suard pudy iond SRedy satll by {4004 FOoad gbd
ebprvie . iproprferacge. efer o 1 veobe safera v *
4 >., st 1S v hi DETUR 2944 24N 104 970 s
o 23338003 S XS Lt T 0\ T RESE I 4 ISOLIETY shees g s
; TS rt et o rhrishoerel O] o B N forregrroalososgere B soepesveferrrgee: Wo sy e
4 it A AR e I G R
a8 $-o ctdedtrnsferot} covteme bypre-f+ epreverie bl fiesepesne)s CORNS siedeivolreofron - oo
3 2513 Roal 22223 223 13 LXRS s reoe . s et b
erpe— e F9E S2LTTST08 CILITIEN AT 1 P2 A
§ R % ¢ RN 5 e 40 TEoeet
P24 gy b 2 by dfetstiiIitpalign Pty b4 294 . :
P LR S A TS 20828 ST P M ITae 2e s T S aned e fieiis .
pTITY Sopmd apy Tpereele Telfees femes ves foroebes =
R >4 1 I R RN IR TN DRI R S
- l v.ovt:-'»v o r Periee % Bl soprroedree-joani .. renbor »§ we - Iy ~~~q
» 13294 o0 1 - (st o2 MY B JONas I Ts 28 21 - 194 .
. TN 33T A SN STl I R R I T b o o
sfebi et b g 384 I st it TR 1AL, + TR S0
s o oy anse o 20244 o000q FhINE Shed [BUS+ SEGIN ¢ s o
.ibe /; g St SR et e bast siest SOk < ISE phat!
JOs Suee
T RIS Tiees preevloeet acefvovgeef o 1o 3 e res Teeideres
3T Gl IR T S S SR 53 3t NESRE RO -+ NNE N8 IS FECad JE0Es Lro3t E ST AN
S8 0 vt $od0d ohads suibd hudan Iudestged i PO IS i34S Pl ¢ pret N
B HTI B ot B IS I S st b T S
e - o+ . 1
SIhY Eoe 4 I 20 3 N R L o SROES o T prega
Y 3. = £ 53as SORMAHEtd SENCY EEA0E SN C2E QUMY PSS S
jredd oo S I IR T e ] [ o 3553 5001 quains odussl pigns Foibalt Suduie-a
5 N S AR @ R g sret ! J
\ " o 13 2N I I ) s s prat
5 + 53
T+ y > oIt D . 1349 porms Seten 2
+ -4 « e [ Sds phuny agde -
L jasededer BYAS Rl ootid iy Y e el - ik ._,-f,
rrobe farg Tite Sonad - 3 T Ty
fodss 140)
T
+ T
1.
—
+
Jried
3
+
-~ e
¥ 1964 g
S44
T :
1 t
13T 2 g *wves Srees food
33 S2Py? sogeespeny guety ot
2254 Soare ¥ oy T P ]
I b gy s ’s [oogite o3 gased pad { ISR SETos souss aupan Sp e
bY f 4
+ -
+ =
A 484 aov - pod [ e
P jod 4 iy
rensbesnbppe byl oo
s s 04 poes — .
[o 120330 3 AR
A oS sy o4
"
T R e 3 Bl S
ettt et s y = o } 137 Aeo et obens et e
bid & 1 I + bt
oo ' | -
v v T v > cevte fhrivepe
“ " e P ol 3 ot el -
Yiores ¥ o § oot 3a pSnah 44
* 305 g Yot D, | b
yoy - v e .- proes + b
97} ;\1-‘“ 2 L ,f ; v § Sovagiivecd jubed condl
sasd L 4 $ 4 s [ s
e ) § 'l &
Feaed : T T = 13 T
b 3 1 +F
4 904 o lf( . ban 4
2 o -
T ¢
sadod 43¢
N8 { e e
e T 54
184 ga 1=
043 8vas oot
tire yos bous 84 o oy ot
T pos '
ol
3ae T
$ 84
>
baq t t
3g0d soond be pod
> 1
- iy &y [ ol Seade +-
e 504 04 T res
>4 >4 b . Juoy 5ol I3s RN S
jages =
' e +
123533
+ 4 12292 hege et dug
e 198333 ifesss
= + Prtoeeetd (220 abnd
MESTY SApad ey o3
be ioes Tegt pe2ee Teve
xl 1 roe s
14 444 had
trelesevrlieres eer
Tesipetar
sfesd jesTaseiel oty Y.["
v I 433
33 ey $3vad Selie 5353 cefit
thiessfrietsessprantiicingl At
velrirebeer
t 133344 1331
ool
.
o
.

- Lo rens tepe v el

PRI

& ot

o Lo




L b

A

o Rk S
13 Tifits IRt ve T
31135 i itH . : 143 f
R B . s 13 : . Py 3 '
» . . . % of ro pé- | Vs I3 K
» ¢ R Bkt 11 B HH Hpt i :
pe +s ] IR g ie 2*
2 refrere .i ? et .
cfeose :
b 3 12344 o ;
b4 » tiodh i ks
+. -~ LTy
384 1 33 T k' > .
& 1M . A
e ! 14531 t ! 3
- o Stee cr @ i 5
e 3 2394 Pl £ v :
N 231 - : :
» i . .- . - : o
gl 4 T -
M trieferes 12220 o e 19 5
{84 HeH 1 ide :
1834 84 2t ' .
. 20 -t
reeTrea rs T T o
iy i F i
it [} .
- .
ey [ 3 1 Y
-8 - oo~ -
13 seeds o ['ive :
jes¢ .. R o R
RN D N ry=vl 4 P s
P+ pe e i34 1384 2 cnd i
1 -~ e IY3 $2244 ¢4 <
s s ! o . 435330 $321 :
*res + crrp-dwol ogy .
ved j£21] 3 BRER I i ¢ ooy t: ‘.».. ceere :.{. .
4 S5434 044 : vifrer ot < Tt a2t t3 8 -
441 $3451 > AR R o I a1 $32, 4
v ve $riiprrssbrenitye bfpory 2 - Ft cepeecs of
1t & e 13383+ [Raos So53i toeri eeddidnl B foon] MRS 29¢ed { de4 234 3
* | reofibbaly b=l - 190dl $3a2d SXTST $0322 5501 HHues iy
+hbere Q - hads 35531 29232 $30ee $44 orbe b Modll eadds ST 23238 S0und e
ot od - [500e Ittt oo Te TR 0y bhriesbiriete bo s-sifrorelyony v“ ro—ttbo
secvatd ree : . eriyens S22 4% 19394 153352 4 s 303] SR2eY 13uas it T 1% So0v 1 39
-t Yooy bads + - =l * - > 22124 - trred . ° ~rtefr
o e L3 = e 2423 2033 S22 31222 29124 $23¢4 sedados P2SSE SR 419 Sands 13¢ 29
13313 T pe T [T sogey povy po LALTY LISy Suney oy prey ‘]
Biitite . . YTy bt ST SRNSE 2t e M SIS
v jor todeod N . . agas ol
Lpriaae 03 3% 5 Shifes s TRt frerfs
- 36244
B3 ttre: 'S b - I ve 3 33222 pe ~bocr b sofeer 0O T ’
ods e : 39954 Seadand inn i ft piY Soiad 104 &t
. serefsiefs = shoittyy i SR IDval GRIRS tt5ed & « N o0 1 |
IR - vhoeil e -, —— prod ae r3g I3
TR (= . Tt o toe i TP 15 I a3 o
. : T 20 e = Sefilitl o friretr
3 s - 13022 $90e4 $5484 ¢4 N Nad Bddd Lbdq Sty poo
Tets 23 Sy jost fedts Se] 3550151 ¢ Sypad tudin (heds Aoans JIESS Les rreed e i {
33331 Ry eemeetes b d ey T el e et S T
[assisngsdl A3dind poag setytindas ol i, e L3 ang (4T pwadt I DO
¥ s [o Sng 4e Seeet T SRR e N S riafe e OTTTT e of .
[S2332237 (7) 22033 igey fades 2SN h ot e 135 MR S
-
re i yases ogyes o b\ = [l STl LT 2o ews Y N | IRy S SIS IS Y Yy oo
[s oa s - — bzso i LR el & o oo Dy —_ -—r -y Rdeas LR & < - -
od sedyt $5257] PEismngt Fae st STt N B 4 ey Sule R far 333 SPRY o teadl S0l
133 So0assTnet & oS S riics soa vy Mhasy + jot fuuds 321 R Sy |
2 t s 1 pagi
ot Ees i Lata} o e Y 2Y 1oy Tewed N Y jroey posiiog o
[Suss TTong 58 A33 Son] Sodgs euns aebly BIT: bots S * jt43=33 NN I et s L B & . |
$osat o ig3 qulhd ; bo0g oe agastfisy soeat Tehal 3% Anndd 85 T - ey
j333qand 0l $ouad sgses Ao 23%s 32158 £ ATl LITETRT R @ o |
bl (Pows sestd Baad ST=7 XX PN S oo jod dusnd St SS00d sabl) SPDe e ¥y~ ¢ Fpna on
Tt LN o : pad T trher 4 §3353 53 T JSoes SRR Ll it e d e et
> 54 o B3 Sodhd pases srag) Syeid Biad shand faat [o o4 baney 2004 hoied 01 | ortel tenll TRes L3253 S90 soudl s a0S *.‘ SIS 94
fad 3 ¢ el 09 g THE] e - + [24 § vaiy S0ud ool + e | SRl ] 2amen e dnad s Ok Yo -3
E.
23T Y 332 SoaT3 SST3 SSTSI ST BTIC TS INS (R en 1o 1 9§ $TTey e 3332 139282, i volind ol
¥ DET3 1000 hgss faded Line: z o npeterty re Saghd o M Sdqaq ioadd o '
t: 2275 Q3113901 224 Josal 1823 sesad Kaad il 144 $oe ¢ il {Saad 181 § suwy sollers RIGd pande seded wilis O - B O
v 382 b4 fy beag 1o e S0 52128 e e >, Pt I IR0S peedy soeis NPT R o N Y
g -1 K
Toh: 7 T ererfrees SN 198 Imes 3 Sooa 2ot TS L
t e iy Yottt ST o2 s + gudus baly B3 I3%% cucstvenad SICTI LARA 2NN NN
s 3 > s Jods sasadteasysyess oo e Seees ey Boit Ssud svade InT23 So S Sy oud
fades > 3 5 coISTISVON e Shgnd sieuy SRIS] I0E I,
3 Toe = T rofeeas 3 s T - prtdy Qoteeseve swe T =~
¥ ry e Jhede bays ot ooty O G S S ’
924 [Boy) Sesdq gaoe e ; L z pui S Nisd
Lo piey] Tase os ; t hi 1 =1 AR { - o ]
Sy I £232% g o - > o i Tt :&.: peey - 3 TTTET e - 1
3 - s sesng chues sosie$de n $2eusde T e e Fese =j pe - ~y
3 I 3 oy s 2eddd o SR s
+14 o 28 owm. - + -1 1) i e =t brtr ey + e -
> i | podil sos 29904 biany o I Sl adans - TIN3: 130 R
: 34 gnda S842d vodn ] Sadad Seeqd giced Hrtes 155 s Sl g seat i fpacd ool -
jogve o N 13 SHRS S — S $24994 994 - {59 soaayn E
.
= : == = <)== e I
toimeiic. o 5 SRR L e s St e 3
t TR Y C e i w 3
+ b joRay 9od i od0ed NGRS v 44 7 3
: t
I TOTIE ST et svate e > iR = 3
i 328y ened SIETY 2ss¢ pade ¥ g sdese HBET e g 3
[y 38 Toned M7~ BT AERSg 2oy -] 3 T od - Gl 3
joa Bt sape T _ - e
—_ %
>
32 3 {onss s 33 NS > g T !
15 7+ S - ~ L2 328 ——. m 90 24 S m. - - — q
&F e p24 T v ol e pRods souty P g '
. i sgigl syt N Reairr sevy oR 223 S0t it S e ;
5298 tuvey jeees s pey s : == o = i 9
4 : jasdes SIEN e b il z il 7
3 1339838 B gay fooy aiingg JET2S 1228 $Se oy uavad Suaen [ 53923 Sou oL
o SergleTtins g o Sois jobdqsd Sesesggeed o i s ol 35324 SRR Aon BN B0 ;
Trererbres Y o auagre o e = T s - ? I e yas ;
3200 tahas St T W S0 4 ot 13z se sl o 3 e s i ~ s i
SRRSO\ ULl yodt &n it Sl N LIRS A ag d4de4 (3NN Ve
i el \ B 335 [ | S A o fris of
+ !
Toas 1o0ee 2e [324] Sapdyibey woiwg dawrs e
1383 33 i = JEed3s RS SR I R 3335 SR 14 i K
fu tag] gt (39 Seia iall S i4sad dud .z :
b Bt i TiE : ettt [ I B ousis M S A
d - 3
SREGS Fing P oty =Peas epe = mdn =T T i
o ) i b Py Staed Iass d322g Sotay e Ll 19 e T
1449 ot Iy Ty 19 resud o3¢ ’? .- o Bk [
Iousf S 3s geaud § Baq & 3s juse i Y 223334 posd 334 Nyl 3
[3ue ——4 ¥+ — o 3 ey <R v ten | E
v . s o3yl e ag Saney by k-
3 shespe YRk : 253 s S )
SStsdegele faeed neds ioad - A . -
> 298 23T =~ T (22X 237 7 29 B
bgas I —<-13 'Y bdudid dpns Gyl ' Foo o
Ao B9 seded coe o2 TN SDOBS Paass 12 T¥Y ¥ - - "M“L. - r -
T pae §g48e 094 : * yos T T f e E
. (o8 & 1323211 334 o - 229 [gogs aey o " Soamssuesy ' P
b e oI M e 1 -E 99 Sugrs 3 e Lo M- S R L K |
3 3o, : ol Semsy ou : $ L 11t T jEass S 3
E
s Tretees =] Sl L] e R YL ] ETe] Tosry rarey sows sovoy aavae oo T Pt soess
nd t
B 438 Sadad 231 - S (St S ¢
[S9nd {as TS N Riv=as Bda 224 BY $3998 gagan  $5ags 3=
o : ol ThtEs 3 $320y sasgh gt : fepil 2
> o ows Dedl 21t gs cunaned rpoge ¥ oy gy bl R et 3o Y] e ;‘
i ooy 15406 guood 20 Sy funas 3 $a3ug Sosd <3 | 1IN e s J SN S
[32419 pudiy doy o ot gt 4 o . o sty LR RO iaadl Slhad + - B2t 2 B
bITIE PRSI REOTY SRane 1ned Sgute atues lnag srents | §% B Py gsats o o = peetd a0 :
Y e eoLl £ore ~ NL‘ = —— e g e i :4
BIE3 JT020 “P5% $7547 §3323 cvad 2o pard edw be f oo NCTErL LT sided i
- b Tads soang Loty Sans e b ] Sty E2 o0 Saaa S T N ' "_o -y
- o 1330 SENe sy s sosed Phas 13290 0ed STI0 L e9g APSs sy rense jagseded
e N o T reieley P eyrTeery o rhEa L e T e IR TS i
e 3 Tt e et Tty Sstasare: s sated : 3 R ST Rl . A e s :
3299 23o0s quels I o [23 $30w $4 003 ag ot ok 23 TRt IE3 ISP et At Sased apesd dvady i ad 1Y 53 2008 |
[IE2 22294 Ssbe4 aoudy PP 4 jazsd sl int 8315t g
' 2
et o il dnactons ol Tt oy ;e el 29 N tadeecdRY 29 had etad g ooy - . i »
SO sodud UBTN bood] ity souitt Sdiiod Sugwe 4 ooy w0 oo - - coprivetees 8.0, A
D08 D S el Lt ey SIe s rarent o dd SR ves s 353 IVON [N Nnnre A 501 :
13208 o2538 22718 $33u4 $duey Fooud Move 13 |
et Frtme PRony 'y § - 1 3
sty YaRnd Fnad cONS cunsd LoTT] SR Sr3ed $ored 3ol Joody !
8979 13004 ee St trer i £
3533 ST 7908 oend gl SvN ool t E
] F38 0 IR SRt PRt Tt ] To ey v ey svary anas coovy ;
3322 S350 olul fiEad 3 30d 2 Theses VT i
b4 oo . f JO0N $0084 3408 54 Somnd Pooed (o oTs TTRY $2954 Sadid odds *
2 oSS SN SRRt 302 $ntt e fnost fodld Siavd MIRS SR | ;
252 27134 2oaty suvus sden 4
$i0ee & I
s34
b 4 + |
proed
2534 k
rele
ool E
| b
| 5
, b
) , 3
|
!
.
b
3
' k.
i
o 4
3
Lo

i

[ T DS S

RS




Ty

-17- ¢

. )
.
»
.

V. CONCLUSIONS

The problen of obtaining estimates of the state of a nonlinear system

is frequently solved by applying linear perturbation theory and using
linear estination theory to determine the perturbations. While this
procedure is frequently satisfactory, many examples have been encountered

"in vhich second order effects.are small but nonnegligible. The application

of linear theory to nonlinear problems is essentially a means of
approximating the mean and covariance of the & posteriori density. In
this paper attention has been directed toﬁgrd the development of
appreximations of these moments that include the influence of second
order terms. The approximation involves the explicit assumption that
the density is gaussian, This is not true for nonlincar system but

" it 18 felt that the first two moments will not be severly affected as

long as the nonlinearity is small, Certainly, one would expect the

accuracy of the moments containing the second order effects to be superior
to the linear moments,

The immediate disadvantage of utilizing a quadratic perturbation theory

lies in the increased pumber of system matrices that have to be determincd.
For linear systems the linear transition matrix is (nxn) and the observation
matrix is(mxn). When the second order effects are included, there are

n additional (nxn) plant matrices and m more (nxn) observation matrices to
be calculated. The increase in computational requirements can be
catastrophic for large n. This problem can be circumvented to an extent

by establishing the equhtions in which the second order effects are
significant and neglecting the insignificant effects in the other equations.

Alth;ugh these resuits may require significantly more calculation, they
do provide a systematic way for modifying linear estimation theory to
include nonlinear effects. Numerical results for simple examples indicate
that significant improvements in the reSpbnse is possible when the
nonlinearities are comparable to the noise., Thus, a sizable increage in

the range of applicability of perturbative techniques may be provided,

ne osvant
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